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Abstract 

The compact lattice gauge theory of the second-rank antisymmetric tensor 

field in four dimensions is studied. By Monte-Carlo simulation on a 10’ lattice, 

we calculate the hypersurface tension. It is found that the tension does not go 

to zero for a finite value of the coupling constant. This suggests the theory has 

only the confinement phase. This result is consistent with the result obtained 

from the dilute gas approximation of the instanton. 

Some phenomenological implications on the string model are also discussed. 
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1. Introduction 

It is well known that the compactifications on the Calabi-Yau manifolds in 

superstring theories lead to an enormous number of four dimensional models which 

possess N = 1 space-time supersymmetry. Unfortunately, due to the lack of the 

understanding in the non-perturbative aspects of the string theory we have not 

yet succeeded in making low energy predictions from those models. So far one is 

only able to treat low energy effective field theories to do some phenomenological 

analyses. Although such analyses might give new predictions for a certain class 

of models, they would not clarify the novel model-independent features which are 

low energy remnants peculiar to string theory. 

On the other hand one of the model independent features in string theory is 

the appearance of the second rank antisymmetric tensor field which is expected 

to behave as an almost massless scalar boson at low energy. Moreover owing to 

the anomaly cancelling counterterm this scalar boson has the same low energy La- 

grangian as that of the invisible axion. Therefore it would be of extreme importance 

to study what the fate of this would-be invisible axion is. 

The cosmological observations impose severe constraints on the value of the 

coupling constants of the invisible axion to matter fields. The coupling constant has 

a dimension of (mass)-‘, where the scale of this mass is restricted to be lo9 - 1012 

GeV”‘z”l. The tree-level mass scale of the coupling of the superstring axion is the 

Planck scale. If the tree-level Lagrangian for the superstring axion remains to be 

correct down to the low energy scale, there will be a serious contradiction to the 

cosmological constraints. 

Since the model independent &on comes from the second-rank antisymmetric 

tensor gauge field, the gauge invariance guarantees the axion to be massless at least 

in the perturb&& sense. One would then imagine that some non-perturbative 

effect may change the low energy behavior of the antisymmetric tensor field drasti- 

cally. In fact this possibility is the point we consider in this paper. In 1982, Peter 

Orland[“studied compact antisymmetric tensor gauge theory using the instanton 
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approximation and found that the system is in a confinement phase for any value 

of the coupling constant. To go beyond the instanton approximation, one has to 

study the model in the lattice approach. 

In this paper we study the compact lattice model by calculating the expectation 

value of the Wilson surface. In Section two we formulate the lattice theory. In 

Section three results of the numerical simulations are presented. Section four is 

devoted to the physical implications of the results to string theory. Conclusions 

and discussions are given in Section five. 

2. Compact Lattice Gauge Theory of Antisymmetric Tensor Field 

We formulate the lattice gauge theory of the antisymmetric tensor field. The 

partition function is given by the following path integral. 

2 = J n dfl(p)e4--Sg) P 
where 

s, = c P(1 - coa(C qP))) 
e PEC 

(2) 

Here c and p denote unit cubes, plaquettes. The lattice action has the invariance 

under the following gauge transformation 

B,“(i) --t B,,(i) + A”(i + p) - A”(i) - Ap(i + u) + A,(i). (3) 

If we take a naive continuum limit by taking 8&i) = a2BPV(z), where a is the 

lattice spacing, the action takes the following form in the continuum, 

s = 3pa2 J ~%H~,~H~~~. (4) 

The tensor H,,",J is the gauge invariant field strength defined as H,,"x = b'[,,Bv~] 

which is invariant under 6B,, = ~&I. 
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The gauge invariant observables are the Wilson surfaces given below 

W(S) = n ezP(iqP)). 
PES 

(5) 

We can calculate the vacuum expectation value of the Wilson surface analytically 

in the strong coupling limit and the weak coupling limit 

P(S)) -/ho @ 

and 

& 1 dxpY(z) 1 dCPb(~‘)(Bry(z)B~(~‘))) (6) -p+, ezP(-- 

s s 

respectively. Here V is the minimum volume surrounded by the surface S. 

When the surface S is that of the unit cube c, the vacuum expectation value 

of W(S) (= (W(c))) is related to the vacuum expectation value of the energy per 

unit cube in the following way 

(E) = 1- (W(c)). (7) 

Now since in the strong and the weak coupling limit the partition function behav 

es as, 

Z-y+ e -PNc(1+ $,. 

and 

“Bloc p-f(N,-N-N.) 

(8) 

respectively, the energy per unit cube is 

(E) = -$Lz 

--p-+0 ; - p 
2 

3 

-P-m sp. 

(9) 

Here NC, Np, Nl and N, are the number of cubes, plaquettes, links and sites respec- 

tively. We have used the fact that for N4 lattice, NC = 4N4, Np = 6N4, Nt = 4N4 
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and N, = N4. 

Another important physical observable is the correlation function of the field 

strength 

In the lattice theory it can be obtained by calculating the correlation function of 

the small Wilson surfaces: 

(W(S)W(S’)) - W(S)) . (WS’N 
= W(s)). (W(s’))(=zp(-(lr,,a(~)H~~(~‘))) - 1) 
- (Hpva(=)Hpm(~‘)). 

(11) 

where S and S’ are the surfaces of unit cubes located at the points z and z’. In 

the strong coupling limit the correlation function behaves as 

W,iva(~)H+-c(d)) - @‘=-‘1 (12) 

which suggests a massive particle mediates inter-string interactions. 

The intuitive picture of the result obatined in the strong coupling expansion is 

that the antisymmetric tnesor field works as an intra-string binding force which is 

proportional to the area of the region surrounded by the string. This is the “volume 

law ” of the Wilson surface. On the other hand, the inter-string interaction is 

suppressed by this “confinement effect”, and the only possible interaction is the 

short-range van der Waals force of the antisymmetric tensor field. This picuture is 

consitent with the result obtained by instanton approximation%hich we introduce 

in Section 4. 

In order to see whether this picture remains true for any value of p, numerical 
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study is required, which will be presented in the next section.” 

3. Simulations 

In this section we calculate the vacuum expectation values of the energy den- 

sity and the Wilson surface for the compact lattice gauge theory of the second 

rank antisymmetric tensor gauge field by Monte-Carlo simulations. The number 

of lattice sites is 104. Our algorithm is the Metropolis algorithm. Using KEK 

supercomputor HITAC 9320, we have performed 10,000 sweeps for each value of 

the coupling constant. 

In Fig. 1, the Wilson surface per unit cube (W(c))(= 1 - (E)) as a function 

of p is presented. We see that there is no sign of any phase transition. The 

result agrees with that of the strong coupling limit and the weak coupling limit for 

sufficiently small and large p respecetively. Pearson”‘calulated the thermal loop of 

14 bP(P IIPEC e”(al)))/p and found qualitaively the similar result. 

Next we considered I x J x K rectangulalr solids ( I,J,K are integers ) for which 

the vacuum expectaion values of the Wilson surfaces WI,,, are calculated. For 

large 1,J and K, WI, J,K in general behave as 

WI,,, N ezP(-X IJK - a. (IJ + JK + XI) - b. (I + J + K)), 03) 

where x is the hypersurface tension and a, b are some constants. The hypersurface 

tension is obtained from the generalization of the Creutz ratio as follows 

x0, J, W 
= -ln( (W~.J,K)(W~.J-I,K-I)(W~-I,J,K-I)(W~-I,J-~,K)) (14) 

(WJ--~,J--I,K--I)(WI--I,J,K)(WI,J--I,K)(WI,J,K-I) ’ 

* The antisymmetric tensor Z,S+ lattice gauge theories are equivalent to spin systems. In 
four dimensions they have phase transitions at finite 0. On the other hand, the antisym- 
metric tensor U(1) lattice gauge theory is equivalent to a coulomb gas system of magnetic 
monopoles”*“. The phase structure could be different in theories with ZN symmetry and 
U(1) symmetry. This is actually the case for ZN and U(1) gauge theories in three dimen- 
sions. As N gets larger the phase transition point beta in ZN lattice gauge theories gets 
larger, and in the limit N -+ cc (namely Z, 3 U(1) gauge theory) the phase transition 
point blows up”‘so that there is no phase transition in the limiting case. 
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We have attached the indices I, J, K to the hypersurface tension to remind us for 

which size of the surface the hypersurface tension is calculated. We plotted the 

hypersurface tensions x(1,1, l), x(2,2,2),x(3,3,3) and x(4,4,4) for various values 

of 0 in Fig.2. The hypersurface tension does not seem to go to zero for a finite 

value of ,B. Due to low statistics we could not determine the scaling behavior of the 

hypersurface tension. We will make a comment on the possible continuum limit in 

the next section. In any way the above result is a strong evidence that the system 

is in the confinement phase for any value of the coupling constant. 

We could not obtain the mass which appears in the field strength correlation 

function because of low statistics. 

4. Physical Implications to String Theory in Four Dimensions 

In the last section we have presented the result of the Monte-Carlo simulation of 

a lattice gauge theory of the antisymmetric tensor field. How can we interpret the 

result ? Since the naive continuum limit of the lattice theory presented in the last 

section is a trivial free field theory, one might think that the dynamical structure 

like the confinement cannot exist. However, this statement is not necessarily true. 

In fact the topological excitations can play a crucial role. 

Suggested by the work of Polyakov’“in the compact QED in three dimensions, 

Peter Orland[“studied n-th rank antisymmetric tensor gauge theories in n+2 and 

other dimensions. The case with n=l is the compact QED in three dimensions and 

the case with n=2 is the second rank antisymmetric tensor gauge theory which 

we are studying in this paper. Assuming that the dilute gas approximation for 

instanton is legitimate, he calculated the vacuum expectation values of the Wilson 

surface (W(S)) and the correlation function of the field strength (F,F,) for the 

case with n=2, where Fp s +xsHyAc . Introducing a cutoff scale a-r, they are 

expressed as follows, 

(W(S)) N ed-&)A)> 

(F&) - kzk;k;zt 
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where p(g) is the hypersurface tension and M is the mass of the scalar mode which 

are given by the following equations 

If we take the continuum limit a -+ 0 for finite Paz, the hypersurface tension and 

the mass vanish and we obtain a trivial theory. On the other hand, if we fine tune 

the coupling constant in such a way that the hypersurface tension or the mass 

remains finite, we obtain a non-trivial theory. In that case the continuum action 

turns out to be the sine-Gordon action. 

Now let us make a rough estimation in the four dimensional string model. 

Although the actual string model is more complicated than the pure B,,” gauge 

theory, we think our model describes one of the essential features of the low energy 

behavior of the antisymmetric tensor field in the string theory. Assuming eq.(l6)be 

correct, we now estimate the scale of the hypersurface tension and the mass of the 

scalar mode by substituting the coupling and cutoff scale. What is the coupling 

constant and the cutoff scale in the string theory ? The standard compactifcation 

scenario on Calabi-Yau manifold, when the string is weakly coupled, gives WI 

p = l/g’ = 1/(4nuGCU’) N 10 

a = l/Meompactifcation N ( lOI - 10”GeV)-‘. 
(17) 

The action for the instanton ~7. mat may vary drastically depending on the details 

of the regularization. If we take iSinrt = 1, 

p(g) - ( 1013 - 10’7GeV)3, 

M - 10” - 1014GeV, 
(18) 

The mass scale becomes even smaller if S. ,“,t is larger. In any case we obtain a string 

confinement at scales much below the Planck scale and the massive scalar whose 

mass is much smaller than the Planck scale. The physical result of the confinement 

effect by the antisymmetric tensor in string theory would be the following : 
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1. According to the field strength correlation function there exist only massive 

modes in the antisymmetric tensor field theory. It is expected that this 

state could decay into many states, because its mass is quite large compared 

to the QCD scale. Therefore the antisymmetric tensor field, which was first 

expected to generate a weakly interacting axion that contradicts cosmological 

observations, is now harmless. 

2. It is expected that the binding energy of the string due to the hypersurface 

tension may change the low lying particle spectrum of the string theory. This 

may be one of the mechanism of obtaining a small mass scale in string theory. 

However one needs more elaborate study to obtain the actual modifications 

of the particle spectrum. 

Now three remarks are in order. In the above estimation we have neglected 

the existence of the string excited states whose mass is of the Planck scale or the 

compactification scale. However, as long as we are interested in the low energy 

behavior of the antisymmetric tensor field, the quantum effect of those higher 

modes are irrelevant. In that respect our analysis may be viewed as a Quenched 

approximation of the full theory. 

Secondly, we have also neglected other massless fields like the graviton, the 

dilaton and the gauge bosons. It would be very important to study the effects of 

the gravity and the dilaton in the lattice approach, but this will be left as a future 

work. 

In the present work we chose a compact lattice action instead of non-compact 

lattice action. This is simply because it is obvious that in the compact lattice 

theory the topological excitations such as the instantons, which plays a crucial role 

in the confinement, are allowed. 

5. Discussions 

In this paper we studied the compact lattice gauge theory of the antisymmetric 

tensor gauge field in four dimensions. By calculating the energy density and the 

hypersurface tension, we confirmed that the theory is in a confinement phase for 
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any values of the coupling constant. This result is consistent with the earlier 

lattice calculation and give qualitaively the same picture as those obained by the 

instanton anaiysis. We have also discussed some phenomenological implications to 

string models. 

Much remain to be done in this topic. Estimating the corrections to particle 

spectrum below the confinement scale is important. This will be studied in the 

future. 

The effect of other massless fields also has to be studied. Some interesting 

results along this line were obtained by S.J.Rey[“‘who found an instanton solution 

of antisymmetric tensor field coupled to gravity and dilaton field. While typing this 

manuscript the authors received a preprint [“‘in which instanton solutions involving 

the antisymmetric tensor field and a scalar field is studied. 
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Figure Captions 

Figure 1 

The expectation values of the Wilson surface for a unit cube (W(c))(= l-(E)) 

as a function of p are presented. The numerical result agrees with the analytical 

behavior obtained in the strong and the weak coupling limit. 

Figure 2 

The hypersurface tension for various values of /3 is plotted. The tension takes 

a non zero value for any ,B. 
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